Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
1.
Front Plant Sci ; 15: 1366515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562566

RESUMO

Introduction: The brown planthopper (BPH) poses a significant threat to rice production in Asia. The use of resistant rice varieties has been effective in managing this pest. However, the adaptability of BPH to resistant rice varieties has led to the emergence of virulent populations, such as biotype Y BPH. YHY15 rice, which carries the BPH resistance gene Bph15, exhibits notable resistance to biotype 1 BPH but is susceptible to biotype Y BPH. Limited information exists regarding how resistant rice plants defend against BPH populations with varying levels of virulence. Methods: In this study, we integrated miRNA and mRNA expression profiling analyses to study the differential responses of YHY15 rice to both avirulent (biotype 1) and virulent (biotype Y) BPH. Results: YHY15 rice demonstrated a rapid response to biotype Y BPH infestation, with significant transcriptional changes occurring within 6 hours. The biotype Y-responsive genes were notably enriched in photosynthetic processes. Accordingly, biotype Y BPH infestation induced more intense transcriptional responses, affecting miRNA expression, defenserelated metabolic pathways, phytohormone signaling, and multiple transcription factors. Additionally, callose deposition was enhanced in biotype Y BPH-infested rice seedlings. Discussion: These findings provide comprehensive insights into the defense mechanisms of resistant rice plants against virulent BPH, and may potentially guide the development of insect-resistant rice varieties.

2.
Chem Commun (Camb) ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629221

RESUMO

The electrochemical reduction of CO2 on catalyst surfaces is hindered by the inefficient mass transfer of CO2 in aqueous solutions. In this study, we employed an electrochemical reduction approach to fabricate a hydrophobic three-dimensional nanoporous silver catalyst with a plastron effect, aiming to enhance the CO2 diffusion. The resulting catalyst exhibited an exceptional performance with the FECO peaking at 95% at -0.65 V (vs. RHE) and demonstrated remarkable stability during continuous electrolysis for 48 hours. Control experiments, together with Tafel analysis, EIS measurements, and contact angle results, confirmed that the notable enhancement of performance was attributed to the hydrophobic porous structure that facilitated efficient storage and rapid mass transfer of low-solubility CO2 gas reactants.

3.
Cell Death Differ ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570607

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.

4.
Res Pract Thromb Haemost ; 8(3): 102375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38623472

RESUMO

Background: The optimal perioperative antithrombotic strategy for patients with acute coronary syndrome (ACS) during percutaneous coronary intervention (PCI) remains controversial. Objectives: To determine the safety and effectiveness of bivalirudin plus ticagrelor vs bivalirudin plus clopidogrel in patients with ACS undergoing PCI in the real world. Methods: Between March 2016 and March 2019, 7234 patients with ACS who had undergone PCI, received bivalirudin periprocedurally, and were prescribed ticagrelor or clopidogrel were enrolled in a single-center, all-comer, modern, retrospective cohort study. Incidence rates of 12-month ischemia (cardiac death, myocardial infarction, or stroke), all-cause death, Bleeding Academic Research Consortium (BARC) type 2,3,5 bleeding, and BARC type 3,5 bleeding were compared between different groups. Results: In total, 4960 patients received bivalirudin plus clopidogrel and 2274 patients received bivalirudin plus ticagrelor. Compared with bivalirudin plus clopidogrel, bivalirudin plus ticagrelor was associated with lower ischemic events (1.74% vs 2.84%; relative risk, 0.61; 95% CI, 0.41-0.91; P = .02) and stroke (0.05% vs 1.01%, P < .001) within 12 months after PCI without excessive risk of bleeding (BARC type 2,3,5 bleeding: 4.49% vs 3.76%, P = .22; BARC type 3,5 bleeding: 2.84% vs 2.02%, P = .08). The beneficial effects of bivalirudin plus ticagrelor were consistent among subgroups. Conclusion: As an initial treatment strategy, bivalirudin plus ticagrelor could reduce the 12-month risk of ischemic events compared with bivalirudin plus clopidogrel significantly without increasing the bleeding risk in ACS patients undergoing PCI.

5.
Neural Netw ; 175: 106279, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608536

RESUMO

This work focuses on the issue of observer-based resilient dissipativity control of discrete-time memristor-based neural networks (DTMBNNs) with unbounded or bounded time-varying delays. Firstly, the Luenberger observer is designed, and additionally based on the observed states, the observer-based resilient controller is proposed. An augmented system is presented by considering both the error system and the DTMBNNs with the controller. Secondly, a novel sufficient extended exponential dissipativity condition is obtained for the augmented system with unbounded time-varying delays by proposing a system solutions-based estimation approach. This method is based on system solutions and without constructing any Lyapunov-Krasovskii functionals (LKF), thereby reducing the complexity of theoretical derivation and computational workload. In addition, an algorithm is proposed to solve the nonlinear inequalities in the sufficient condition. Thirdly, the sufficient extended exponential dissipativity condition for the augmented system with bounded time-varying delays is also obtained. Finally, the effectiveness of the theoretical results is illustrated through two simulation examples.

6.
Adv Mater ; : e2400075, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597782

RESUMO

Designing nanocomposite hydrogels with oriented nanosheets has emerged as a promising toolkit to achieve preferential performances that go beyond their disordered counterparts. Although current fabrication strategies via electric/magnetic force fields have made remarkable achievements, they necessitate special properties of nanosheets and suffer from an inferior orientation degree of nanosheets. Herein, a facile and universal approach is discovered to elaborate MXene-based nanocomposite hydrogels with highly oriented, heterogeneous architecture by virtue of supergravity to replace conventional force fields. The key to such architecture is to leverage bidirectional, force-tunable attributes of supergravity containing coupled orthogonal shear and centrifugal force field for steering high-efficient movement, pre-orientation, and stacking of MXene nanosheets in the bottom. Such a synergetic effect allows for yielding heterogeneous nanocomposite hydrogels with a high-orientation MXene-rich layer (orientation degree, f = 0.83) and a polymer-rich layer. The authors demonstrate that MXene-based nanocomposite hydrogels leverage their high-orientation, heterogeneous architecture to deliver an extraordinary electromagnetic interference shielding effectiveness of 55.2 dB at 12.4 GHz yet using a super-low MXene of 0.3 wt%, surpassing most hydrogels-based electromagnetic shielding materials. This versatile supergravity-steered strategy can be further extended to arbitrary nanosheets including MoS2, GO, and C3N4, offering a paradigm in the development of oriented nanocomposites.

7.
Bioact Mater ; 36: 301-316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38496035

RESUMO

Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.

8.
Opt Lett ; 49(6): 1437-1440, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489419

RESUMO

A high-performance 5-junction cascade quantum dot (QD) vertical cavity surface-emitting laser (VCSEL) with 1.3 µm wavelength was designed. The characteristics of the QD as active regions and tunnel junctions are combined to effectively increase output power. The photoelectric characteristics of single-junction, 3-junction cascade, and 5-junction cascade QD VCSELs are compared at continuous-wave conditions. Results indicate that the threshold current gradually decreases, and the output power and slope efficiency exponential increase with the increase of the number of active regions. The peak power conversion efficiency of 58.4% is achieved for the 5-junction cascade individual QD VCSEL emitter with 10 µm oxide aperture. The maximum slope efficiency of the device is 6.27 W/A, which is approximately six times than that of the single-junction QD VCSEL. The output power of the 5-junction cascade QD VCSEL reaches 188.13 mW at injection current 30 mA. High-performance multi-junction cascade 1.3-µm QD VCSEL provides data and theoretical support for the preparation of epitaxial materials.

9.
Toxicol Appl Pharmacol ; 486: 116914, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522585

RESUMO

Ferroptosis has been shown to be involved in carbon tetrachloride (CCl4)-induced acute liver injury (ALI). The mitochondrion-targeted antioxidant MitoQ can eliminate the production of mitochondrial reactive oxygen species (mtROS). This study investigated the role of MitoQ in CCl4-induced hepatocytic ferroptosis and ALI. MDA and 4HNE were elevated in CCl4-induced mice. In vitro, CCl4 exposure elevated the levels of oxidized lipids in HepG2 cells. Alterations in the mitochondrial ultrastructure of hepatocytes were observed in the livers of CCl4-evoked mice. Ferrostatin-1 (Fer-1) attenuated CCl4-induced hepatic lipid peroxidation, mitochondrial ultrastructure alterations and ALI. Mechanistically, acyl-CoA synthetase long-chain family member 4 (ACSL4) was upregulated in CCl4-exposed human hepatocytes and mouse livers. The ACSL4 inhibitor rosiglitazone alleviated CCl4-induced hepatic lipid peroxidation and ALI. ACSL4 knockdown inhibited oxidized lipids in CCl4-exposed human hepatocytes. Moreover, CCl4 exposure decreased the mitochondrial membrane potential and OXPHOS subunit levels and increased the mtROS level in HepG2 cells. Correspondingly, MitoQ pretreatment inhibited the upregulation of ACSL4 in CCl4-evoked mouse livers and HepG2 cells. MitoQ attenuated lipid peroxidation in vivo and in vitro after CCl4 exposure. Finally, MitoQ pretreatment alleviated CCl4-induced hepatocytic ferroptosis and ALI. These findings suggest that MitoQ protects against hepatocyte ferroptosis in CCl4-induced ALI via the mtROS-ACSL4 pathway.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38466600

RESUMO

Neural architecture search (NAS) is a popular method that can automatically design deep neural network structures. However, designing a neural network using NAS is computationally expensive. This article proposes a gradient-guided evolutionary NAS (GENAS) to design convolutional neural networks (CNNs) for image classification. GENAS is a hybrid algorithm that combines evolutionary global and local search operators to evolve a population of subnets sampled from a supernet. Each candidate architecture is encoded as a table describing which operations are associated with the edges between nodes signifying feature maps. Besides, evolutionary optimization uses novel crossover and mutation operators to manipulate the subnets using the proposed tabular encoding. Every n generations, the candidate architectures undergo a local search inspired by differentiable NAS. GENAS is designed to overcome the limitations of both evolutionary and gradient descent NAS. This algorithmic structure enables the performance assessment of the candidate architecture without retraining, thus limiting the NAS calculation time. Furthermore, subnet individuals are decoupled during evaluation to prevent strong coupling of operations in the supernet. The experimental results indicate that the searched structures achieve test errors of 2.45%, 16.86%, and 23.9% on CIFAR-10/100/ImageNet datasets and it costs only 0.26 GPU days on a graphic card. GENAS can effectively expedite the training and evaluation processes and obtain high-performance network structures.

11.
Sci Total Environ ; 919: 170676, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350567

RESUMO

As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Cloreto de Amônio/metabolismo , Consórcios Microbianos , Chlorella/metabolismo , Técnicas de Cocultura , Biomassa
13.
Cancer Res Treat ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351683

RESUMO

Purpose: Chemotherapy has been the primary treatment for patients with B-cell acute lymphoblastic leukemia (B-ALL). However, there are still patients who are not sensitive to chemotherapy, including those with refractory/relapse (R/R) disease and those experiencing minimal residual disease (MRD) re-emergence. Chimeric antigen receptor-T lymphocytes (CAR-T) therapy may provide a new treatment option for these patients. Materials and Methods: Oure institution conducted a single-arm prospective clinical trial (ChiCTR-OPN-17013507) using CAR-T-19 to treat R/R B-ALL and MRD re-emergent patients. One hundred and fifteen patients, aged 1-25 years (median age 8 years), were enrolled, including 67 R/R and 48 MRD re-emergent CD19-positive B-ALL patients. Results: All patients achieved morphologic CR, and within one month after infusion, 111 out of 115 (96.5%) patients achieved MRD-negative CR. With a median follow-up time of 48.4 months, the estimated 4-year leukemia-free survival (LFS) rate and overall survival (OS) rate were (68.7±4.5) % and (70.7±4.3) %, respectively. There were no significant differences in long-term efficacy observed among patients with different disease statuses before infusion (4-year OS: MRD re-emergence vs. R/R B-ALL, 70.6±6.6% vs. 66.5±6.1%, p=0.755; 4-year LFS: MRD re-emergence vs. R/R B-ALL, 67.3±7.0% vs. 63.8±6.2%, p=0.704). R/R B-ALL patients bridging to transplantation after CAR-T treatment had a superior OS and LFS compared to those who did not. However, for MRD re-emergent patients, there was no significant difference in OS and LFS, regardless of whether they underwent HSCT or not. Conclusion: CD19 CAR-T therapy effectively and safely cures both R/R B-ALL and MRD re-emergent patients.

14.
ACS Appl Mater Interfaces ; 16(9): 11275-11288, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383056

RESUMO

The current research models of breast cancer are usually limited in their capacity to recapitulate the tumor microenvironment in vitro. The lack of an extracellular matrix (ECM) oversimplifies cell-cell or cell-ECM cross-talks. Moreover, the lack of tumor-associated macrophages (TAMs), that can comprise up to 50% of some solid neoplasms, poses a major problem for recognizing various hallmarks of cancer. To address these concerns, a type of direct breast cancer cells (BCCs)-TAMs coculture organoid model was well developed by a sequential culture method in this study. Alginate cryogels were fabricated with appropriate physical and mechanical properties to serve as an alternative ECM. Then, our previous experience was leveraged to polarize TAMs inside of the cryogels for creating an in vitro immune microenvironment. The direct coculture significantly enhanced BCCs organoid growth and cancer aggressive phenotypes, including the stemness, migration, ECM remodeling, and cytokine secretion. Furthermore, transcriptomic analysis and protein-protein interaction networks implied certain pathways (PI3K-Akt pathway, MAPK signaling pathway, etc.) and targets (TNF, PPARG, TLR2, etc.) during breast cancer progression in a TAM-leading immune microenvironment. Future studies to advance treatment strategies for BCC patients may benefit from using this facile model to reveal and target the interactions between cancer signaling and the immune microenvironment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor/metabolismo , Técnicas de Cocultura , Biomimética , Criogéis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
15.
Exp Hematol Oncol ; 13(1): 14, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326887

RESUMO

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.

16.
J Cancer ; 15(5): 1169-1181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356709

RESUMO

Background: The glucan extract of Oudemansiella raphanipes (Orp) has multiple biological properties, similar to extracts of other natural edible fungi. Drugs traditionally used in cancer treatment are associated with several drawbacks, such as side effects, induction of resistance, and poor prognosis, and many recent studies have focused on polysaccharides extracted from natural sources as alternatives. Our study focuses on the therapeutic role and molecular mechanism of action of Orp in breast cancer progression. Methods: MMTV-PyMT transgenic mice were used as the spontaneous breast cancer mice model. Immunoblotting, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were used to evaluate the tumor behaviors in breast cancer. The inflammatory cell model was constructed using TNF-α. Macrophage activation and WNT/ß-catenin signaling were assayed using western blotting and immunofluorescence. Results: Orp management significantly inhibited tumor growth and promoted tumor cell apoptosis in MMTV-PyMT transgenic mice. Besides, the Orp challenge also attenuated the ability of breast tumors to metastasize into lung tissues. Mechanistically, Orp treatment restrained the polarization of M1 macrophages to M2 macrophages and suppressed WNT/ß-catenin signaling in mouse tumor tissues, which implied that Orp-mediated tumor inhibition partly occurred via regulating the inflammatory response. Findings from in vitro experiments confirmed that Orp inhibited the TNF-α-induced nuclear transportation of ß-catenin, thus preventing inflammation signaling and the expression of c-Myc in MCF-7 cells. Conclusion: Orp inhibits breast cancer growth and metastasis by regulating macrophage polarization and the WNT/ß-catenin signaling axis. The findings of this study suggest that Orp may be a promising therapeutic strategy for breast cancer.

17.
Nat Commun ; 15(1): 1539, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378907

RESUMO

It is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance. HABD quantifies the number of distinct amide bonds per unit mass of polyamide, based on a comprehensive segmentation of polyamide structure and consistent computational protocols derived from X-ray photoelectron spectroscopy data. Compared to its counterpart, HABD overcomes the limitations and offers a more accurate depiction of the crosslinked networks. Empirical data validate that HABD exhibits the expected correlation with the salt rejection and water permeance of reverse osmosis and nanofiltration polyamide membranes. Notably, HABD is applicable for analyzing complex crosslinked polyamide networks formed by highly functional monomers. By offering a powerful toolbox for systematic analysis of crosslinked polyamide networks, HABD facilitates the development of permselective membranes with enhanced performance in desalination applications.

18.
Mol Neurobiol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363534

RESUMO

Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.

19.
Small ; : e2310092, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377281

RESUMO

Supported ionic liquid membranes (SILMs), owing to their capacities in harnessing physicochemical properties of ionic liquid for exceptional CO2 solubility, have emerged as a promising platform for CO2 extraction. Despite great achievements, existing SILMs suffer from poor structural and performance stability under high-pressure or long-term operations, significantly limiting their applications. Herein, a one-step and in situ interfacial polymerization strategy is proposed to elaborate a thin, mechanically-robust, and highly-permeable polyamide armor on the SILMs to effectively protect ionic liquid within porous supports, allowing for intensifying the overall stability of SILMs without compromising CO2 separation performance. The armored SILMs have a profound increase of breakthrough pressure by 105% compared to conventional counterparts without armor, and display high and stable operating pressure exceeding that of most SILMs previously reported. It is further demonstrated that the armored SILMs exhibit ultrahigh ideal CO2 /N2 selectivity of about 200 and excellent CO2 permeation of 78 barrers upon over 150 h operation, as opposed to the full failure of CO2 separation performance within 36 h using conventional SILMs. The design concept of armor provides a flexible and additional dimension in developing high-performance and durable SILMs, pushing the practical application of ionic liquids in separation processes.

20.
Int J Neural Syst ; 34(3): 2450014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38352979

RESUMO

Feature selection (FS) is recognized for its role in enhancing the performance of learning algorithms, especially for high-dimensional datasets. In recent times, FS has been framed as a multi-objective optimization problem, leading to the application of various multi-objective evolutionary algorithms (MOEAs) to address it. However, the solution space expands exponentially with the dataset's dimensionality. Simultaneously, the extensive search space often results in numerous local optimal solutions due to a large proportion of unrelated and redundant features [H. Adeli and H. S. Park, Fully automated design of super-high-rise building structures by a hybrid ai model on a massively parallel machine, AI Mag. 17 (1996) 87-93]. Consequently, existing MOEAs struggle with local optima stagnation, particularly in large-scale multi-objective FS problems (LSMOFSPs). Different LSMOFSPs generally exhibit unique characteristics, yet most existing MOEAs rely on a single candidate solution generation strategy (CSGS), which may be less efficient for diverse LSMOFSPs [H. S. Park and H. Adeli, Distributed neural dynamics algorithms for optimization of large steel structures, J. Struct. Eng. ASCE 123 (1997) 880-888; M. Aldwaik and H. Adeli, Advances in optimization of highrise building structures, Struct. Multidiscip. Optim. 50 (2014) 899-919; E. G. González, J. R. Villar, Q. Tan, J. Sedano and C. Chira, An efficient multi-robot path planning solution using a* and coevolutionary algorithms, Integr. Comput. Aided Eng. 30 (2022) 41-52]. Moreover, selecting an appropriate MOEA and determining its corresponding parameter values for a specified LSMOFSP is time-consuming. To address these challenges, a multi-objective self-adaptive particle swarm optimization (MOSaPSO) algorithm is proposed, combined with a rapid nondominated sorting approach. MOSaPSO employs a self-adaptive mechanism, along with five modified efficient CSGSs, to generate new solutions. Experiments were conducted on ten datasets, and the results demonstrate that the number of features is effectively reduced by MOSaPSO while lowering the classification error rate. Furthermore, superior performance is observed in comparison to its counterparts on both the training and test sets, with advantages becoming increasingly evident as the dimensionality increases.


Assuntos
Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...